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Nonmonotonic behavior of mobility in a multidimensional overdamped periodic system

Jing-Dong Bao
Department of Physics, Beijing Normal University, Beijing 100875, China
~Received 2 November 1999; revised manuscript received 19 June 2000!

The mobility motion of an overdamped particle subjected to a thermal white noise in a multidimensional
coupled periodic potential tilted by a constant force is studied. An approximate expression for the mean
velocity of the particle is obtained on the assumption that nontransport variables play the roles of parameters,
and the theoretical prediction is compared with a Langevin simulation. It is observed that the two-dimensional
mean velocity can be a nonmonotonic function of the temperature when the curvature of the potential at the
barriers is less than that at local minima. Moreover, the peak of mean velocity drifts toward low temperatures
and becomes sharper if a third degree of freedom is introduced.

PACS number~s!: 82.20.Mj, 05.40.2a, 02.50.Ey
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I. INTRODUCTION

The problem of Brownian motion in periodic potentia
arises in several fields of science. Restricted to o
dimensional cases, one deals with particles that are subje
a thermal white noise and move in a washboard potential@1#.
In a broad sense, the nonmonotonic behavior of the ou
signal as a function of some characteristics of the noise
theoretical problem of considerable interest@2#. Recently,
some authors have focused attention on the behaviors o
output signal in a symmetrical periodic potential@3–10#,
which might be the mobility velocity of the particle along th
direction of external force, as a function of the noise inte
sity, namely, the temperature of the heat bath. It has b
concluded that nonmonotonic behavior of the mobility w
noise intensity cannot be observed in one-dimensional o
damped cases if the particle is subject to a time-indepen
external force@5,6#. Because the particles must climb over
periodic array of potential barriers, the steady velocity of
particles saturates for large noise intensity. Howev
Marchesoni@6# argued that the constant driving force c
induce resonantlike mobility in the underdamped case. D
et al. @9# claimed that this phenomenon occurred in a wa
board potential in an inhomogeneous overdamped med
For the above two cases, the inertia of the particle or
coordinate-dependent friction could act as a surrogate fo
external oscillating field. On the other hand, the net curr
of a particle in a rocking ratchet becomes a peaked func
of the noise intensity@11#, in which the local symmetry of
the periodic potential is broken and the driving force is
periodic function of time.

In the present paper, we observe and show the nonm
tonic dependence of the mean velocity of an overdam
Brownian particle with respect to the noise intensity, whe
the particle is moving in a multidimensional coupled sy
metric periodic potential biased by a uniform constant for
This resonancelike phenomenon could be very useful in
derstanding the nature of completely symmetric perio
structures and in construction of devices, as well as for
plications such as noisy Josephson junctions, mobility
diffusion of atoms in crystals, and supersonic conductivit
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II. MODEL

The mobility motion of an overdamped Brownian partic
is described by a set of Langevin equations~in rescaled
units!

q̇i~ t !52
]U~q1 ,q2 , . . . ,qN!

]qi
1Fd i11A2Th i~ t !, ~1!

with

^h i~ t !&50, ^h i~ t !h j~ t8!&5d i j d~ t2t8!, ~2!

and i , j 51,2, . . . ,N. HereF is a constant force along theq1
direction and the temperatureT is the intensity of the white
noiseh i .

The potentialU(q1 ,q2 , . . . ,qN) is a periodic function of
q1 with period L, i.e., U(q11L,q2 , . . . ,qN)
5U(q1 ,q2 , . . . ,qN), and, because the drift velocity of th
particles must be bound, we require thatU(q1 ,q2 , . . . ,qN)
→` when qi→6` ( i>2). Here the potential is taken t
have the form

U~q1 ,q2 , . . . ,qN!5U1~q1!1
1

2 (
i 52

N

Ci~q1!qi
2 . ~3!

The energetic activation potentialU1(q1) and the curvature
functionsCi(q1) have the same periodL @12#, and the latter
are positive everywhere. For any givenq1, a slice of the
potential along eachqi direction (i>2) is a parabola, and
this parabola becomes wider and narrower periodically.

The N-dimensional Fokker-Planck equation~FPE! corre-
sponding to the Langevin equation~1! can be written as the
continuity equation

]r~q1 ,q2 , . . . ,qN!

]t
1(

i 51

N
]Ji

]qi
50, ~4!

where the probability currentJi is defined by

Ji52S ]U

]qi
2Fd i1D r2T

]

]qi
r. ~5!
4606 ©2000 The American Physical Society



th
th

n -
n-

PRE 62 4607NONMONOTONIC BEHAVIOR OF MOBILITY IN A . . .
Unfortunately, there does not exist an exact solution of
probability current for coupled cases. Now we use
‘‘quasimultidimensional approximation’’@13# to provide a
prediction for the mean velocity of the particle in the statio
ary state, i.e., one first keepsqi ( i>2) fixed and then inte-
grates over these variables. Assuming that at fixedqi ( i
>2) the mobility motion of the particle in theq1 direction
n
o

e

ex
e
e

-

can be treated as one dimensionasl~1D!, J1 must beq1 in-
dependent as in the 1D case, that is,J1
5J1(q2 ,q3 , . . . ,qN). Letting the variables qi ( i
52,3, . . . ,N) play the roles of (N21) parameters, we ob
tain the stationary solution of the FPE as if it is one dime
sional and construct the probability currentJ1 along theq1
direction from Eq.~5! @1,13,14#,
J1~q2 ,q3 , . . . ,qN!5
T@12exp~2FL/T!#

E
0

L

dq1exp@2C~q1 ,q2 , . . . ,qN!/T#E
q1

q11L

dq18exp@C~q18 ,q2 , . . . ,qN!/T#

, ~6!

with

C~q1 ,q2 , . . . ,qN!5U~q1 ,q2 , . . . ,qN!2Fq1 . ~7!

The total current equals the integration ofJ1 over all qi ( i>2) within one spatial period ofq1 becauseJ̄i50 (iÞ1). So

J̄5L21^q̇1&5 J̄15E
0

L

dq1S )
i 52

N E
2`

`

dqi D J1~q2 ,q3 , . . . ,qN!r~q1 ,q2 , . . . ,qN!. ~8!

Here the distribution functionr is given approximately byr (0) in the equilibrium state@13#, i.e.,

r~q1 ,q2 , . . . ,qN!5r (0)~q1 ,q2 , . . . ,qN!5
exp@2C~q1 ,q2 , . . . ,qN!/T#

E
0

L

dq1S )
i 52

N E
2`

`

dqi D exp@2C~q1 ,q2 , . . . ,qN!/T#

. ~9!
ddle
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ion
Clearly, the total particle current determined by Eq.~8!
can be reduced to one dimension when all curvature fu
tions of the potential along nontransport degrees of freed
are equal to constants. In general, one needs to evaluat
multi-integrals in Eq.~8! numerically. I should like to remark
that the above quasimultidimensional approximation is

FIG. 1. The equipotentials ofU(q1 ,q2). The dashed line is the
most likely path of the particle.
c-
m
the

-

pected to give good results when the minima and the sa
points lie on straight lines as for the potential~3!.

In this study, the energetic activation potentialU1 and the
curvature functionsCi are taken to have the forms

U1~q1!52sin~q1!, Ci~q1!51.12sin~q11f i !,
~10!

and the periodL52p. Here the phase anglesf i ( i>2) play
important roles; they determine particularly the curvatu
difference between local minima@qi

05(2np1p/2)d i1 , n
integral# and maxima@qi

b5(2np2p/2)d i1# of the potential.
The 2D equipotentials ofU(q1 ,q2) with f25p are shown
in Fig. 1. It is easy to prove that the most likely path of t
particle is the solution of the deterministic equation~1! with-
out noise@15#, i.e., the bottom line of the potential surface

In the high-temperature limit, the asymptotic express
of the flow for the potential~3! with Eq. ~10! is given by

J̄5
F

2p
N0

21E
0

2p

dq1S )
i 52

N E
2`

`

dqi D
3expS 2(

i 52

N

@1.12sin~q11f i !#qi
2D I 0

22~Az!,

~11!

whereI 0 is the modified Bessel function of zero order,
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z5 (
i , j 52

N

cos~f i2f j !~qiqj !
2, ~12!

and the normalization constantN0 reads

N05p (N21)/2E
0

2p

)
i 52

N

@1.12sin~q11f i !#
21/2dq1 .

~13!

The asymptotic behavior of the mobility, limT→`2p J̄/F
,1 because ofI 0.1, should be noted; however, this qua
tity is equal to 1 in one dimension, and the 2D asympto
current is independent of the phase anglef2. Moreover, in
the absence of energy barriersU1, the potential~3! is called
the periodic channel. The mobility of the particle in a tilte
multidimensional periodic channel is always smaller than
free mobility. For a 2D channel withq1-independent curva
ture on the potential surface, the mean velocity of the part
along theq1 direction is independent of the width of th
channel. But any departure from the rectangular shape
vides extra regions that the mobilized particle can wande
before it is able to increase its displacement alongq1 under a
finite external force.

For comparison, the stochastic Runge-Kutta algorithm
applied to simulate the Langevin equations~1!, which is a
rather simple and effective approach for smooth nonlin
potentials. However, it is very difficult to solve th
N-dimensional FPE numerically whenN>3. The mean
steady velocity of the overdamped particle is determined

^q̇1&52p J̄5
1

t
@^q1~ t !&2q1~0!#, ^q̇i&50 ~ i>2!.

~14!

This averaging over the stochastic realization is repea
1000 times starting from the same initial conditionsq1(0)
5p/2 andqi(0)50 (i>2). For each set of parameters
the model the mobility process will be integrated over 15

time steps 531023 to obtain the mean velocity of the pa
ticle with sufficiently high accuracy.

FIG. 2. The 2D mean velocity 2p J̄ predicted by Eq.~8! as a
function of f2 when T51.5 and for three values ofF51.2, 1.0,
and 0.8 from top to bottom.
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III. RESULTS AND DISCUSSION

All of the results are expressed in dimensionless un
Figure 2 shows the two-dimensional mean velocity of t
particle (N52) as a function off2 for different driving
forcesF in terms of Eq.~8!. It is seen that the mean velocit
has a maximum value in the region ofp,f2,1.4p where
C2(q1

b),C2(q1
0). Those kinds of potential shapes are cond

cive to mobility motion of the particles along the direction
external force. The 2D mean velocity obtained by using E
~8! as a function ofT for different phase anglesf2 is plotted
in Fig. 3. It is observed that the mean velocity increases
the value of the ratioC2(q1

b)/C2(q1
0) decreases for fixedF at

finite temperatures. An important finding is that the 2D me
velocity of the particle in the stationary state can be a n
monotonic function of the noise intensity when the value
f2 is taken nearp. It has found that the 2D mean velocity
larger than the 1D values at low temperatures; however,
former is less than the latter in the limit of high temperatu
as predicted by Eq.~11!. Thus the 2D mean velocity be
comes a nonmonotonic function of the noise intensity. T
feature results from the oscillating effect of the particl
along theq2 direction.

Figure 4 shows the temperature-dependent 2D mean

FIG. 3. The 2D mean velocity 2p J̄ predicted by Eq.~8! as a
function ofT for fixed F50.85. The values off2 /p corresponding
to the asymptotic mean velocities from top to bottom are 1.1, 1
1.0, 1.3, 0.9, 0.8, and 0.7, respectively.

FIG. 4. The 2D mean velocity 2p J̄ as a function ofT when
f25p and for four values ofF51.2, 1.0, 0.8 and 0.6 from top to
bottom. The theoretical prediction~solid line! is compared with the
Langevin simulation~dashed line with circles!.
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locity calculated by the theoretical prediction forf25p and
for different F; it is also compared with the Langevin simu
lations within the same graph. The mean velocity increa
from zero with increasingT and is a peaked function of th
temperature. However, the mean velocity does not equal
at T50 whenF.1, because the energy barriers of the wa
board potential vanish along the lineq250. The nonmono-
tonic behavior of the mean velocity withT for different F is
observed also in the simulation results, although the theo
ical values are systematically less than the numerical data
moderate to large temperatures, and the peak’s position
dicted by the theory occurs before the numerical one.

We fix f25p and analytically and numerically evalua
the three-dimensional mean velocity (N53) shown in Figs.
5~a! and 5~b!. We now changef3 to match the condition for
a nonmonotonic phenomenon. The occurrence of a max
velocity is also observed in Fig. 5~a! whenf35p, resulting
in a shift of the flow’s peak toward smallerT and in a cor-
responding reduction of the peak’s height. The 3D peak
also sharper than the 2D peak. But this nonmonotonic ef
cannot be observed whenf350 @see Fig. 5~b!#.

In order to have a qualitative understanding of the d
namical influence of the nontransport variables on the mo
ity motion, we propose a one-dimensional effective poten
Ce f f(q1) through eliminating the variablesqi ( i>2)
@13,16,17#. By definition

FIG. 5. The 3D mean velocity calculated by the theory~solid
line! and the Langevin simulation~dashed line with circles! as a
function of T for three values ofF51.2, 1.0, and 0.8 from top to
bottom. Here~a! f25f35p; ~b! f25p, f350.
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exp@2Ce f f~q1!/T#5)
i 52

N E
2`

`

dqi

3exp@2C~q1 ,q2 , . . . ,qN!/T#;

~15!

thus

Ce f f~q1!5U1~q1!2Fq11
1

2
TS (

i 52

N

ln Ci~q1!

2~N21!ln~2pT!D . ~16!

In the absence of an external forceF, the effective potential
is plotted in Figs. 6~a! (N52) and 6~b! (N53) for fixed
f25p, and the original 1D potentialU1(q1) is also shown
in the same figures. It is seen from the two figures that t
effective potential depends on the noise intensity and ha
complex shape; also, its barrier heightDCe f f becomes a
nonmonotonic function of the temperature. That is, the b
rier height of the effective potential shows a minimum at
optimal temperature. It can be shown that the 3D optim
temperature whenf35p is less than the 2D one. Therefor
both 2D and 3D mean velocities of the particle can achie
maxima at finite temperatures. Nevertheless, the bar

FIG. 6. The effective potential compared with the original 1
potential ~solid line, T50.0) for different temperatures whenF
50 andf25p. ~a! N52 with T52.0 ~circles!, T51.2 ~squares!,
T50.5 ~triangles!; ~b! N53 with T51.5 andf35p ~circles!, T
50.8 andf35p ~squares!, f350 and variousT ~triangles!.
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height of the 3D effective potential remains invariant for a
T when f350. In this caseC2(q1

0).C2(q1
b), C3(q1

0)
,C3(q1

b), andC2(q1
0)C3(q1

0)5C2(q1
b)C3(q1

b); thus a reso-
nantlike velocity cannot be shown. This is because the
namical influence of the two nontransport degrees of fr
dom on the mobility motion has been counteracted.

IV. SUMMARY

The overdamped Brownian particle moving in a on
dimensional periodic potential under a constant force can
show resonantlike mobility, but this phenomenon is actua
possible in a multidimensional coupled potential. As a co
sequence, the mean velocity of the particle increases
decreasing ratio of curvature between local maxima
minima of the potential at low temperatures. The asympto
value of the multidimensional mobility is always less th
A
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-
ot
y
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d

ic

that in the limit of high temperature. Thus it is observed th
the 2D particle velocity in the stationary state can be
peaked function of the noise intensity for a more open
rabola of the potential perpendicular to the barriers. Furth
either the mean velocity peak is shifted toward smaller te
peratures or the nonmonotonic behavior of mobility is cou
teracted, if a third nontransport degree of freedom is int
duced. Finally, these effects can be understood well in te
of a temperature-dependent one-dimensional effective po
tial.
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