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Nonmonotonic behavior of mobility in a multidimensional overdamped periodic system
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The mobility motion of an overdamped particle subjected to a thermal white noise in a multidimensional
coupled periodic potential tilted by a constant force is studied. An approximate expression for the mean
velocity of the particle is obtained on the assumption that nontransport variables play the roles of parameters,
and the theoretical prediction is compared with a Langevin simulation. It is observed that the two-dimensional
mean velocity can be a nonmonotonic function of the temperature when the curvature of the potential at the
barriers is less than that at local minima. Moreover, the peak of mean velocity drifts toward low temperatures
and becomes sharper if a third degree of freedom is introduced.

PACS numbgs): 82.20.Mj, 05.40--a, 02.50.Ey

I. INTRODUCTION 1. MODEL

The mobility motion of an overdamped Brownian particle

The problem of Brownian motion in periodic potentials is described by a set of Langevin equatiois rescaled
arises in several fields of science. Restricted to oneunits
dimensional cases, one deals with particles that are subject to
a thermal white noise and move in a washboard poteitial
In a broad sense, the nonmonotonic behavior of the output
signal as a function of some characteristics of the noise is a_
theoretical problem of considerable inter¢g{. Recently, with
some authors have focused attention on the behaviors of the
output signal in a symmetrical periodic potent{@-10], (m(1)=0, (m(t)7;(t"))= 3 8(t—t"), 2)
which might be the mobility velocity of the particle along the . )
direction of external force, as a function of the noise inten—a.ndl = 1.2, ... N. HereF is a constgnt fofce along th:ﬁ.
sity, namely, the temperature of the heat bath. It has beeﬂlr_ectlon and the temperatufieis the intensity of the white
concluded that nonmonotonic behavior of the mobility with NoIS€ 7; . . . - .
noise intensity cannot be observed in one-dimensional over- The _r;gtentlau_(?jl,qzl_, - 0N) 'SS pe:loLdm function of
damped cases if the particle is subject to a time-independer‘iﬁU W peno 4 b L€, th(qld 'ft'qzly i 'qﬁ)th
external forcd5,6]. Because the particles must climb over a __ (41,92, .. - An), and, because the dift velocity of the

periodic array of potential barriers, the steady velocity of thepartlcles must be bound, we require thitqy .y, .. - .an)

) ) ) : —o when g;— *o (i=2). Here the potential is taken to
particles saturates for large noise intensity. Howevery ..o the form

Marchesoni[6] argued that the constant driving force can

induce resonantlike mobility in the underdamped case. Dan 1 N

et al.[9] claimed that this phenomenon occurred in a wash- U(d,0z, -+ - an)=VUa(d) + 5 > Ci(ag?. (3
board potential in an inhomogeneous overdamped medium. =2

For the above two cases, the inertia of the particle or the . o )

coordinate-dependent friction could act as a surrogate for ah'€ €nergetic activation potential, (q;) and the curvature
external oscillating field. On the other hand, the net curren{uncuon.s.ci(ql) have the same perld_d [12], ano_l the latter
of a particle in a rocking ratchet becomes a peaked functiofi'& Positive everywhere. For any givep, a slice of the

. =
of the noise intensity11], in which the local symmetry of pqtennal along eacly; dlr_ectlon (=2)isa parz_ibo_la, and
o Nl L . _this parabola becomes wider and narrower periodically.
the periodic potential is broken and the driving force is a . . :
L X . The N-dimensional Fokker-Planck equatiéRPE) corre-
periodic function of time.

sponding to the Langevin equatidh) can be written as the
In the present paper, we observe and show the nonmonq: .. . :
. . %ontlnwty equation
tonic dependence of the mean velocity of an overdampe

Brownian particle with respect to the noise intensity, where
the particle is moving in a multidimensional coupled sym-

metric periodic potential biased by a uniform constant force.
This resonancelike phenomenon could be very useful in un- " . .
derstanding the nature of completely symmetric periodic¢VNere the probability currerd is defined by

structures and in construction of devices, as well as for ap-

p!icati_ons such as_noisy Josephson junctiops, mobilit_y_and Ji= —(E—F&l)p—Tip. (5)
diffusion of atoms in crystals, and supersonic conductivity. aq; aq;

aU(qlquI e qu)
aq;

qi(t)=— +F S+ \2T7i(t), (1)

N
Jd o P aJ;
p(d1,02 QN)+Z i

— =0, 4
ot i=1 04 @
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Unfortunately, there does not exist an exact solution of thecan be treated as one dimensiondd)), J; must beq; in-
probability current for coupled cases. Now we use thedependent as in the 1D case, that is);
“quasimultidimensional approximationT13] to provide a =J,(g,,93, ....,0dn). Letting the variables q; (i
prediction for the mean velocity of the particle in the station-=2,3, ... N) play the roles of N—1) parameters, we ob-
ary state, i.e., one first keeps (i=2) fixed and then inte- tain the stationary solution of the FPE as if it is one dimen-
grates over these variables. Assuming that at figedi sional and construct the probability curreht along theq;
=2) the mobility motion of the particle in thg, direction  direction from Eq.(5) [1,13,14,

T[1—exp —FL/T)]

L gL !
fo dog;exd —¥(dy,0z2, .- - ,0n)/T] fq daiexd ¥ (a;,0qz, ... An)/T]
1

J1(02,03, - .. ON) = (6)
with
¥(dy,dz2, - - - An)=U(01,0z2, - .. An) —FO;. (7)

The total current equals the integrationXyfover allg; (i=2) within one spatial period ofj; becauseTizo (i#1). So

_ i _ L N o
J=L"Xay)=3;= jo d%(iﬂz fdei)‘Jl(anQSa PN IN) T 1 EYe PRI T B (8)
Here the distribution functiop is given approximately by(® in the equilibrium stat¢13], i.e.,

exd —¥(d1,92, - - . dn)/T]

L N e '
f olql(ilj2 f_wdqi)exq—wa,qz, AN/ T]

0

p(ql!qZI e !qN):p(O)(qliq21 e 1qN): (9)

Clearly, the total particle current determined by E8).  pected to give good results when the minima and the saddle
can be reduced to one dimension when all curvature funcpoints lie on straight lines as for the potent(a).
tions of the potential along nontransport degrees of freedom In this study, the energetic activation potentibl and the
are equal to constants. In general, one needs to evaluate tbarvature function<; are taken to have the forms
multi-integrals in Eq(8) numerically. | should like to remark
that the above quasimultidimensional approximation is ex-  U,(qy)=—-sin(q;), Ci(qy)=1.1-sin(q,+ ¢)),
(10

: AN—//
\\JJ : \\J \\14 and the period. = 2. Here the phase angles (i=2) play

important roles; they determine particularly the curvature

difference between local minimpg®=(2n7+ 7/2)8;, n

integral and maximd q°= (2n#— 7/2) 81 ] of the potential.

The 2D equipotentials dfJ(q,q,) with ¢,= 7 are shown

in Fig. 1. It is easy to prove that the most likely path of the

particle is the solution of the deterministic equati@nwith-

out noise[15], i.e., the bottom line of the potential surface.
In the high-temperature limit, the asymptotic expression

of the flow for the potentia(3) with Eq. (10) is given by

L —

.5-

N

NN s pefalif

N
01 2 3 4 567 8 9101112131415161718 xXex _iEZ[1-1_Sin(Q1+¢i)]Qi2)|52(\/E),

FIG. 1. The equipotentials df(q;,q,). The dashed line is the
most likely path of the particle. wherel is the modified Bessel function of zero order,
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FIG. 2. The 2D mean velocity 2] predicted by Eq(8) as a - _
function of ¢, when T=1.5 and for three values ¢=1.2, 1.0, FIG. 3. The 2D mean velocity 2] predicted by Eq(8) as a
and 0.8 from top to bottom. function of T for fixed F =0.85. The values o,/ corresponding
to the asymptotic mean velocities from top to bottom are 1.1, 1.2,
N 1.0, 1.3, 0.9, 0.8, and 0.7, respectively.
2
z= cog ¢i— ¢;)(Qiq;)°, 12
iJEZZ 19— ¢)(qi9;) (12 lll. RESULTS AND DISCUSSION

All of the results are expressed in dimensionless units.
and the normalization constaN{ reads Figure 2 shows the two-dimensional mean velocity of the
particle N=2) as a function of¢, for different driving
on N forcesF in terms of Eq.(8). It is seen that the mean velocity
No=7MN"D2[ T] [1.1-sin(g,+ ¢))] g, has a maximum value in the region K ¢,<1.47 where
0 i=2 C,(q?)<C,(qY). Those kinds of potential shapes are condu-
13 cive to mobility motion of the particles along the direction of
external force. The 2D mean velocity obtained by using Eqg.
The asymptotic behavior of the mobility, lim..27J/F  (8) as a function off for different phase angles, is plotted
<1 because of,>1, should be noted; however, this quan- In Fig. 3. It is obsgrved éhat the0 mean velocity increases as
tity is equal to 1 in one dimension, and the 2D asymptoticthe value of the rati€(q;)/C5(q;) decreases for fixeH at
current is independent of the phase angle Moreover, in finite temperatures. An important finding is that the 2D mean
the absence of energy barridds, the potential3) is called ~ Velocity of the particle in the stationary state can be a non-
the periodic channel. The mobility of the particle in a tilted monotonic function of the noise intensity when the value of
multidimensional periodic channel is always smaller than the?> is taken neatr. It has found that the 2D mean velocity is
free mobility. For a 2D channel with;-independent curva- larger than the 1D values at low temperatures; however, the
ture on the potential surface, the mean velocity of the particidormer is less than the latter in the limit of high temperature
along theq; direction is independent of the width of the @S predicted by Eq(11). Thus the 2D mean velocity be-
channel. But any departure from the rectangular shape pr¢omes a nonmonotonic function of the noise intensity. This
vides extra regions that the mobilized particle can wander if€ature results from the oscillating effect of the particles
before it is able to increase its displacement alqngnder a ~ 2l0ng theg, direction.

finite external force. Figure 4 shows the temperature-dependent 2D mean ve-
For comparison, the stochastic Runge-Kutta algorithm is
applied to simulate the Langevin equatiofs, which is a 11
rather simple and effective approach for smooth nonlinear ;: W
potentials. However, it is very difficult to solve the s L - .
N-dimensional FPE numerically whehN=3. The mean 01 | f —
steady velocity of the overdamped particle is determined by - 06 | SEELIUE RIS
s 05 [: oo
1 0.4 -
(ap)=2md= T [{a1(D)~ax(0)], (a)=0 (i=2). ol
(14) 0.1

0.0 e e EEEEEE—
0.0 1.0 2.0 3.0 4.0 5.0 6.0
This averaging over the stochastic realization is repeated
1000 times starting from the same initial conditiogpg0)
=m/2 andq;(0)=0 (i=2). For each set of parameters of  FiG. 4. The 2D mean velocity 2] as a function ofT when
the model the mobility process will be integrated oveP 10 ¢,=r and for four values oF =1.2, 1.0, 0.8 and 0.6 from top to

time steps X 102 to obtain the mean velocity of the par- bottom. The theoretical predictigisolid line) is compared with the
ticle with sufficiently high accuracy. Langevin simulation(dashed line with circles
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. . FIG. 6. The effective potential compared with the original 1D
FIG. 5. The 3D mean velocity calculated by the theylid  ,qential (solid line, T=0.0) for different temperatures whe

line) and the Langevin simulatiofdashed line with circleésas a =0 and ¢, = . (8 N=2 with T=2.0 (circles, T=1.2 (square}
function of T for three values oF=1.2, 1.0, and 0.8 fromtopto  t_ 5 (triangles; (b) N=3 with T=1.5 andé;s3=7r (circles, T

bottom. Here(@) ¢;= 3=, (b) ¢o=7, ¢3=0. =0.8 and¢s= 7 (squarel ¢3=0 and variousT (triangles.

locity calculated by the theoretical prediction f¢s= 7 and N e
for differentF; it is also compared with the Langevin simu- eXF{—‘I’eff(%)/T]:H da
lations within the same graph. The mean velocity increases w2
from zero with increasing and is a peaked function of the Xexgd —¥(q1.92, - .. ,0n)/T];
temperature. However, the mean velocity does not equal zero (15)
atT=0 whenF>1, because the energy barriers of the wash-
board potential vanish along the limg=0. The nonmono- thus
tonic behavior of the mean velocity withfor differentF is
observed also in the simulation results, although the theoret- 1
ical values are systematically less than the numerical data for Wer(d1)=Ua(a1) —Fay+ 5T
moderate to large temperatures, and the peak’s position pre-
dicted by the theory occurs before the numerical one.
We fix ¢,=m and analytically and numerically evaluate —(N=1)In(27T)
the three-dimensional mean velociti€ 3) shown in Figs.
5(a) and b). We now changeb; to match the condition for  |n the absence of an external forEethe effective potential
a nonmonotonic phenomenon. The occurrence of a maximaé plotted in Figs. ) (N=2) and Gb) (N=3) for fixed
velocity is also observed in Fig(& when ¢;=, resulting  ¢,= 7, and the original 1D potentidl ,(q,) is also shown
in a shift of the flow's peak toward small@rand in a cor- in the same figures. It is seen from the two figures that this
responding reduction of the peak’s height. The 3D peak ieffective potential depends on the noise intensity and has a
also sharper than the 2D peak. But this nonmonotonic effeatomplex shape; also, its barrier heightV.;; becomes a
cannot be observed whefy =0 [see Fig. )]. nonmonotonic function of the temperature. That is, the bar-
In order to have a qualitative understanding of the dy-rier height of the effective potential shows a minimum at an
namical influence of the nontransport variables on the mobiloptimal temperature. It can be shown that the 3D optimal
ity motion, we propose a one-dimensional effective potentiatemperature whews= 7 is less than the 2D one. Therefore,
Veis(qq) through eliminating the variableg); (i=2) both 2D and 3D mean velocities of the particle can achieve
[13,16,17. By definition maxima at finite temperatures. Nevertheless, the barrier

N
22 InCi(ay)

. (16
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height of the 3D effective potential remains invariant for anythat in the limit of high temperature. Thus it is observed that
T when ¢3=0. In this caseC,(q?)>C,(q"), Cs(q?) the 2D particle velocity in the stationary state can be a
<C3(qd), andC»(q2)C4(q2) =C,(q2)C4(qP); thus a reso- peaked function of the noise intensity for a more open pa-
nantlike velocity cannot be shown. This is because the dyrabola of the potential perpendicular to the barriers. Further,
namical influence of the two nontransport degrees of freeeither the mean velocity peak is shifted toward smaller tem-

dom on the mobility motion has been counteracted. peratures or the nonmonotonic behavior of mobility is coun-
teracted, if a third nontransport degree of freedom is intro-
IV. SUMMARY duced. Finally, these effects can be understood well in terms

_ _ o of a temperature-dependent one-dimensional effective poten-
The overdamped Brownian particle moving in a one-tjg|.

dimensional periodic potential under a constant force cannot
show resonantlike mobility, but this phenomenon is actually
possible in a multidimensional coupled potential. As a con-
sequence, the mean velocity of the particle increases with
decreasing ratio of curvature between local maxima and This work was supported by the Foundation of Excellent
minima of the potential at low temperatures. The asymptotic¥oung Teachers from the Ministry of Education, China and
value of the multidimensional mobility is always less thanthe National Natural Science Foundation of China.
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